Java Cardl] 2.1.1
Development Kit User’s
Guide

Sun

micrasystems

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303 USA

650 960-1300 fax 650 969-9131

June 1, 2000

Copyright © 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA
All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice the Java CardO technology to use this document for internal evaluation purposes only.
Other than this limited license, you acquire no right, title, or interest in or to the document and you shall
have no right to use the document for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, Java Card, SunDocs, and SunExpress are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX® is a
registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Contents

Preface ix

Who Should Use This Book ix
Before You Read This Book x
How This Book Is Organized x
Related Books xi

Ordering Sun Documents xi

What Typographic Changes Mean xii

Introduction to the Java Card Development Kit 1

Installation 3

Installing the Java Cardd 2.1.1 Development Kit 3
Setting up Your Environment 4
Installed Directory Structure 5

Obtaining javax.comm 7

How to Use this Release 9

The Java Card Demonstration Applets 9
Running the Sample Applets 9

Building the Sample Applets 10

Contents iii

4. Usingthe Converter 13

Java Compiler Options 13

File and Directory Naming Conventions 14
Input Files 14
Output Files 14

Loading Export Files 15

Specifying an Export Map 16

Running the Converter 17
Command Line Arguments 17

Command Line Options 17

5. Usingcapgen 21

Command line for capgen 21

6. Usingthe JCWDE 23
Preliminaries 23

Running the JCWDE Tool 24

7. Usingthe Installer 25
Overview 25
Installer Applet AID 25
How to Use the Installer 25
Installer APDU protocol 27

Protocol Data Unit Types 27

Installer Error Response APDUs 29
Installer Requirements 32

Installer Limitations 32

8. Using the APDUTool 33

Command line for apdutool 33

iv. Java Cardd 2.1.1 Development Kit User's Guide ¢ June 1, 2000

apdutool syntax 34

A. JCA Syntax Example 37

Contents v

vi Java CardO 2.1.1 Development Kit User's Guide * June 1, 2000

Figures

FIGURE 4-1 Calls between packages go through the export files 16

FIGURE7-1 Installer APDU Transmission Sequence 27

Figures vii

viii ~ Java Cardd 2.1.1 Development Kit User's Guide ¢ June 1, 2000

Preface

Java CardO technology combines a subset of the Javad programming language with
a runtime environment optimized for smart cards and similar kinds of small-
memory embedded devices. The goal of Java Card technology is to bring many of
the benefits of Java software programming to the resource-constrained world of
smart cards.

The Java Card API is compatible with international standards, such as 1SO7816, and
industry-specific standards, such as Europay/Master Card/Visa (EMV).

The Java Cardd 2.1.1 Development Kit User’s Guide contains information on how to
install and use the Java Card Development Kit tools comprising this release.

Who Should Use This Book

The Java Card 2.1.1 Development Kit User’s Guide is targeted at developers who
are creating applets using the Java CardJ 2.1.1 Application Programming Interface, Sun
Microsystems, Inc., and also at developers who are considering creating a vendor-
specific framework based on the Java Card 2.1.1 technology specifications.

Preface ix

Before You Read This Book

Before reading this guide, you should be familiar with the Java programming
language, object-oriented design, the Java Card technology specifications, and smart
card technology. A good resource for becoming familiar with Java technology and
Java Card technology is the Sun Microsystems, Inc. Web site, located at:
http://java. sun. com

X

How This Book Is Organized

Chapter 1, “Introduction to the Java Card Development Kit,” provides an overview
of the Java Card Development Kit and the tools in the Kit.

Chapter 2, “Installation,” describes how to install the tools included in this release.

Chapter 3, “How to Use this Release,” explains the intended use of the tools and
sample applets in this release, by means of presenting the sample applets in the Java
Card Demonstration.

Chapter 4, “Using the Converter,” provides an overview of the Converter and
details of how to run it.

Chapter 5, “Using capgen,” describes how to use the capgen utility.
Chapter 6, “Using the JCWDE,” describes how to use the JCWDE applet simulator.
Chapter 7, “Using the Installer,” describes how to create applets using the installer.

Chapter 8, “Using the APDUTool,” describes using this tool to send APDUs to the
JCWDE.

Appendix A, “JCA Syntax Example,” describes the JCA output of the Converter
using a commented example file.

Java Cardd 2.1.1 Development Kit User’s Guide « June 1, 2000

Related Books

References to various documents or products are made in this manual. You should
have the following documents available:

Java Cardd 2.1.1 Application Programming Interface, Sun Microsystems, Inc.
Java Cardd 2.1.1 Virtual Machine Specification, Sun Microsystems, Inc.
Java Cardd 2.1.1 Runtime Environment (JCRE) Specification, Sun Microsystems, Inc.

The Javall Language Specification by James Gosling, Bill Joy, and Guy L. Steele.
Addison-Wesley, 1996, ISBN 0-201-63451-1.

The JavaO Virtual Machine Specification (Java Series), Second Edition by Tim
Lindholm and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

The Java Class Libraries: An Annotated Reference (Java Series) by Patrick Chan and
Rosanna Lee. Addison-Wesley, ISBN: 0201634589

ISO 7816 Specification Parts 1-6

Ordering Sun Documents

The SunDocs*™ program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the
SunExpress™ Internet site at htt p://ww. sun. conf sunexpr ess.

Preface xi

Xii

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or Symbol Meaning

Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

<AaBbCc123> Command-line placeholder:
replace with a real name or
value

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Edit your . | ogi n file.
Use | s -ato list all files.
machi ne_nane% You have nmail .

To delete a file, type rm <fi |l enanme>.

Read Chapter 6 in User’s Guide. These
are called class options.
You must be root to do this.

Java Cardd 2.1.1 Development Kit User's Guide ¢ June 1, 2000

CHAPTER 1

Introduction to the Java Card
Development Kit

Java Cardd 2.1.1 Development Kit is for smart cards and similar kinds of small-
memory embedded devices. This release of the is intended to give you practice in
taking Java sources (applets you write yourself or the provided samples), and
running them in the JCWDE. (JCWDE stands for Java Card] Workstation
Development Environment, a simulator and related tools for Java Card applet
development.)

You can also run Java sources through the converter tool provided with this release
to verify that the applet uses only the supported subset of the Java programming
language. As an additional purpose, the convert er tool outputs a CAP file or JCA
file containing a representation of the applet. Alternatively, you can input the JCA
file into the capgen tool to convert the applet to a CAP file conforming to the Java
Cardd 2.1.1 Virtual Machine Specification, Revision 1.0, Sun Microsystems, Inc.

2 Java CardO 2.1.1 Development Kit User’s Guide * June 1, 2000

CHAPTER 2

Installation

This release is provided for the Microsoft Windows NT 4.0 platform as a Zip archive,
and for the UNIX® platform as a compressed tar archive.

Note — Be sure not to install this release into the same directory as a prior release.

Note — UNIX Users — The command line examples in this guide are written with
the assumption that directory names in paths are separated with back slashes (\) in
the style of Microsoft Windows. You, as a user of UNIX, will of course substitute
forward slashes (/) in paths. Similarly, an executable file for Windows users will be
shown with an . exe filename extension. No such extension is necessary for a user of
UNIX. Batch scripts are referred in Microsoft Windows and shell scripts in UNIX.

The command lines shown here assume the C-shell (csh). For other shells, modify
the command lines appropriately.

Installing the Java CardlJ 2.1.1
Development Kit

NT Users

Unzip the filejava_card_kit2_1_1-wi n. zi p. Use your favorite unzip utility to
unpack the file.

4

UNIX Users

Uncompress and untar the file java_card_kit2_1_1-uni x. tar. Z with the
following command line:

unconpress -c¢ java_card_kit2_1 l-unix.tar.Z | tar xvf -

All Users

This creates a directory j c211 (and its subdirectories) in whatever was your current
location in your file system when unzipping or uncompressing.

Setting up Your Environment

The JC21BIN Environment Variable

Set the environment variable JC21BI Nto the j c211\ bi n directory. This environment
variable specifies the directory that the command scripts use to locate the jar files.
For example, if you unzipped the release at the root of the C volume on an NT
system, or your home directory (for example, the user name doe) on a UNIX system:

NT Users

set JC21BI N=c:\jc211\bin

UNIX Users

setenv JC21BI N / hore/ doe/j c211/ bin

The PATH Environment Variable

Next, add the JC21BI N directory to your PATH environment variable:

NT Users

set PATH=9%PATH% % C21Bl N%

Java Card 2.1.1 Development Kit User’'s Guide ¢ June 1, 2000

UNIX Users

setenv PATH ${ PATH}: $JC21BI N

The CLASSPATH

The batch and shell scripts provided with the Version 1.0P assume that you have a
CLASSPATH environment variable specifying the location of cl asses. zi p or
rt.jar, the Java API core class files. (For details, refer to your Java IDE or JDK
installation instructions.) As supplied, the batch and shell script files append
appropriate JAR files to the CLASSPATH when they are run.

Note — When compiling Java files or executing the JCWDE, ensure that the
cl asses. zi p file entry or the rt . j ar file entry precedes the javacard api jar file
(api 21.j ar) entry in the CLASSPATH.

Java VM Considerations

For the examples listed in this guide, you will need to be able to run the Java VM
from the command line of your workstation.

The batch and shell scripts as provided with the Version 1.0P assume that the Java
executable is in your PATH. To see whether it is, type j ava - hel p. If this does not
return the Java Runtime Loader help message, you will need to add the directory
where j ava. exe can be found to your PATH environment variable.

Installed Directory Structure

The result of unpacking is a directory j c211 with the following subdirectories.
api 21

This directory contains the following APIs:

java. |l ang

This package contains the source files for the Java Card language API. The
classes in this package are fundamental to the design of the Java Card
technology subset of the Java programming language.

j avacard. f ramewor k

Chapter 2 Installation 5

This package provides source files for the framework of classes and interfaces
for the core functionality of a Java Card applet.

javacard. security

This package provides the source files for the classes and interfaces for the Java
Card security framework.

j avacar dx. crypto

This extension package contains security classes and interfaces for export-
controlled functionality.

The sources for the APIs provided with this release are for information only, and
are not to be modified or compiled.

Note — this release does not include the j avacar dx. crypt o APl package.

bi n
This directory contains the JAR files and batch or shell scripts for the APDU Tool,
j cwde, convert er, and capgen tools.

deno
This directory contains only one demonstration.
denol

This demo contains the installer, the JavaPur se, JavalLoyal t y and Wl | et
sample applets.

doc
This directory contains the following two documents in pdf format:
Java Cardd 2.1.1 Development Kit User’s Guide (this document).
Java Card 2.1.1 Development Kit Release Notes

The Java Card 2.1.1 Development Kit Release Notes provides new changes and
updated information for this release of the Java Card 2.1.1 Development Kit.

sanpl es

This directory contains the following sample applets: Hel | oWor | d, JavaLoyal ty,
JavaPur se, Nul | App and Wal | et ; and a sample library called Sanpl eLi br ary.

Java Card 2.1.1 Development Kit User’'s Guide ¢ June 1, 2000

Obtaining javax.comm

The Java Communications API 2.0 contains a package, j avax. conm which is needed
to run the Java Card 2.1.1 Development Kit. Please visit Sun’s World Wide Web site
at http://java. sun. conl product s/ j avacommt i ndex. ht nl to obtain the
package. Follow the instructions there to install the package and correctly set up
your environment to use it.

Chapter 2 Installation 7

8 Java CardO 2.1.1 Development Kit User’s Guide * June 1, 2000

CHAPTER 3

How to Use this Release

This release provides you demonstration applets and the tools to verify and simulate
their execution. In practicing using the tools with the demonstration applets, you can
also learn how to verify and simulate Java Card applets you might write.

The Java Card Demonstration Applets

The denpl demonstration contains the installer, and the JavaPur se, JavalLoyal ty
and Wal | et applets as part of the masked JCWDE image. denol runs in the JCWDE

simulator.

Running the Sample Applets

To practice running the JCWDE and the APDUTool , use the sample files provided in
this release. The denp directory contains three files j cwde. app, denol. scr, and
denpl. scr. expect ed. out .

Open two command windows. Make sure that JC21BI N environment variable is set
to the bi n subdirectory of the root Java Card 2.1.1 installation. Also verify that j ava
is in the command path, and CLASSPATH is set up correctly. Then change to the denp
directory in both windows. In one window, enter the following command to start
JCWDE:

jcwde -p 9025 jcwde. app
(For more information on the JCWDE, refer to Chapter 6, “Using the JCWDE.”)

The j cwde. app file is a config file containing Java Card applet installation
information. It lists all the sample applets provided in the Version 1.0P. The JCWDE
responds with:

JavaCard 2.1.1 Workstation Devel opnent Environment (version 1.1).
Copyright (c) 2000 Sun Mcrosystens, Inc. Al rights reserved.
Li stening for T=0 Apdu's on TCP/IP port 9, 025.

In the other window, start the APDU Tool:

apdut ool denpl.scr > denol. scr. out

The denol. scr file is an APDU script which contains the command APDUs to be
sent to the JCWDE. The APDUTool creates the denpl. scr. out file containing
APDU Tool output.

Upon completion of the denpl. scr execution, the message

jcwde exiting on receipt of power down comrand

is printed by JCWDE. The newly created denol. scr. out file should be the same as
the denpl. scr. expect ed. out file provided with this release.

10

Building the Sample Applets

Although the sample applets are provided pre-built to run in the JCWDE, you may
want to rebuild them to learn how to build your own. The following commands and
responses show how to compile the Nul | App sample application, how to invoke the
converter tool to verify that the applet uses the correct subset of the Java
programming language, and to create a CAP file. You can follow similar steps for the
other sample applets or applets you write yourself. Before entering the following
commands, change to the sanpl es directory.

> javac -g -classpath ..\bin\api21.jar com sun\javacard\ sanpl es\ Nul | App\ *. j ava
> converter -config com sun\javacard\sanpl es\ Nul | App\ Nul | App. opt
Java Card 2.1.1 Cass File Converter (version 1.1)

Copyright (c) 2000 Sun M crosystenms, Inc. Al rights reserved.
conversion conpleted with O errors and O war ni ngs.

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

Note — This is how the commands and responses will look on the Microsoft
Windows NT platform. On the Solaris platform, backslashes "\’ would be replaced
by forward slashes '/’).

Chapter 3 How to Use this Release 11

12 Java Cardd 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

CHAPTER 4

Using the Converter

The Converter loads and processes class files that make up a Java package. The
Converter outputs are a CAP file and an export file.

Another Converter output is a JCA (Java Card Assembly) file, which you then input
to capgen to produce a CAP file. A JCA file is a human-readable ASCII file to aid
testing and debugging.

Java Compiler Options

The cl ass files should be compiled with - g option of the JDK Java compiler
command line. Don’t use - O option.

This is because the Converter determines the local variable types by checking the
LocalVariableTable attribute within the class file. This attribute is generated in the
class file only if the - g option is used at the Java compiler command line.

The - Ooption is not recommended at the Java compiler command line, for two
reasons. This option is intended to optimize execution speed rather than minimize
memory usage. The latter is much more important in Java Card technology. Also, if
the - Ooption is used, the LocalVariableTable attribute won’t be generated even if the
- g option is used.

13

14

File and Directory Naming Conventions

This section details the names of input and output files for the Converter, and gives
the correct location for these files. With some exceptions, the Converter follows the
Java naming conventions for default directories for input and output files. These
naming conventions are also in accordance with the definitions in § 4.1 of the Java
Cardd 2.1.1 Virtual Machine Specification, Sun Microsystems, Inc.

Input Files

The files input to the Converter are Java class files named with the . cl ass suffix.
Generally, there are several class files making up a package. All the class files for a
package must be located in the same directory under the root directory, following
the Java naming conventions. The root directory can be set from the command line
using the - cl assdi r option. If this option is not specified, the root directory
defaults to be the directory from which the user invoked the Converter.

Suppose, for example, you wish to convert the package j ava. | ang. If you use the
- cl assdi r flag to specify the root directory as C: \ mywor k, the command line will
be:

converter -classdir C\nmywork java.lang package_ai d package_version

The converter will look for all class files in the j ava. | ang package in the directory
C:\mywor k\ j ava\ |l ang

Output Files

The name of the CAP file, export file, and the JCA file must be the last portion of the
package specification followed by the extensions . cap, . exp, and . jca,
respectively.

By default, the files output from the Converter are written to a directory called
j avacar d, a subdirectory of the input package's directory.

In the above example, the output files are written by default to the directory
C.\nywor k\ j ava\l ang\j avacard

The - d flag allows you to specify a different root directory for output.

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

In the above example, if you use the - d flag to specify the root directory for output
to be C:\ nyout put, the Converter will write the output files to the directory
C:\myout put\java\l ang\j avacar d.

When generating a CAP file, the Converter creates a JCA file in the output directory
as an intermediate result. If the JCA file is not a desired output, then omit the
- out JCA. The Converter then deletes the JCA file at the end of the conversion.

Loading Export Files

A Java Card export file contains the public API linking information (public classes,
public and protected methods and fields) of classes in an entire package. The
Unicode string names of classes, methods and fields are assigned unique numeric
tokens.

Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file is produced by the Converter when a
package is converted. This package's export file can be used later to convert another
package that imports classes from the first package. Information in the export file is
included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

During the conversion, when the code in the currently converted package references
a different package, the Converter loads the export file of the different package.

FIGURE 4-1 on page 16 illustrates how an applet package is linked with the
java. l ang, the j avacard. f ranewor k and j avacar d. securi ty packages via their
export files.

You can use the - export pat h command option to specify the locations of export
files. The path consists of a list of root directories in which the Converter looks for
export files. Export files must be named as the last portion of the package name
followed by the extension . exp. Export files are located in a subdirectory called

j avacar d, following the Java Card directory naming convention.

For example, to load the export file of the package j ava. | ang, if you have specified
-exportpath asc:\myexportfiles, the Converter searches the directory
c:\nyexportfiles\java\ll ang\javacard for the export file | ang. exp.

Chapter 4 Using the Converter 15

export files contain
mappings to tokens

export file export file export file

Applet Calls to methods and
references to fields

FIGURE 4-1 Calls between packages go through the export files

Specifying an Export Map

You can request the Converter to convert a package using the tokens in the pre-
defined export file of the package that is being converted. Use the - expor t map
command option to this.

Note — This command option exists for licensed users who might modify one of the
Java Card packages. The current release does not permit any such modification of
source code. The documentation of this command option is provided for information
only.

For example, if you have implemented the j avacar d. f r amewor k package, you must
convert the package using the export file f r amewor k. exp provided by Sun. By
specifying the - expor t map option, you instruct the Converter to convert your
implementation of the j avacar d. f r amewor k package according to the tokens
defined in the f r amewor k. exp.

The converter loads the pre-defined export file of the currently-converted package
the same way it loads other export files.

16 Java Cardd 2.1.1 Development Kit User’s Guide * June 1, 2000

Running the Converter

Command line usage of the Converter is:

converter [options] package_nane package_aid
nmaj or _versi on. m nor_versi on

The file to invoke the Converter is a shell script (convert er) on the UNIX® platform,
and a batch file (converter. bat) on the Microsoft Windows NT platform.

Command Line Arguments

The arguments to this command line are:

package_nane

the fully-qualified name of the package to convert.
package_ai d

5 to 16 decimal, hex or octal numbers separated by colons. Each of the numbers
must be byte-length.

naj or _versi on. m nor_versi on

user-defined version of the package.

Command Line Options
The options in this command line are:

-classdir <the root directory of the class hierarchy>
Set the root directory where the Converter will look for classes.

If this option is not specified, the Converter uses the current user directory as the
root.

Instruct the Converter to support the 32-bit integer type

-exportpath <List of directories>

Chapter 4 Using the Converter 17

These are the root directories in which the Converter will look for export files.
The separator character for multiple paths is platform dependent. It is semicolon
(;) for the Microsoft Windows NT platform and colon (;) for the UNIX® platform.

If this option is not specified, the Converter sets the expor t pat h to the Java
cl asspat h.

- export map

Use the token mapping from the pre-defined export file of the package being
converted. The converter will look for the export file in the export pat h.

-appl et <Al D> <cl ass_nane>

Set the default applet AID and the class that defines the install method for the
applet.

If the package contains multiple applet classes, this option must be specified for
each class.

-d <the root directory for output>
Set the root directory for output
-out [CAP] [EXP] [JCA]

Tell the Converter to output the CAP file, and/or the export file, and/or the JCA
file.

By default (if this option is not specified), the Converter outputs a CAP file and an
export file.

-V, -version

Print the Converter version string
-v, -verbose

Enable verbose output
- mask

Indicates this package is for mask, so restrictions on native methods are relaxed

Note — The - out [CAP] and - mask options cannot be used together.

-hel p

Print out help message

18 Java Cardd 2.1.1 Development Kit User’s Guide * June 1, 2000

- nowar n

Instruct the Converter to not report warning messages

- nobanner

Suppress all messages to standard output

Command Configuration File

You could also include all the command line arguments and options in a
configuration file. The syntax to specify a configuration file is:

converter —config <configuration file nane>

The <configuration file name>argument contains the file path and file name of
the configuration file.

Chapter 4 Using the Converter 19

20 Java CardO 2.1.1 Development Kit User's Guide ¢ June 1, 2000

CHAPTER 5

Using capgen

capgen produces a CAP file from a JCA file.

Command line for capgen

The file to invoke capgen is a shell script (capgen) on the UNIX platform, and a
batch file (capgen. bat) on the Microsoft Windows NT platform.

Command line syntax for capgen is:

capgen [-options] <infile>

The option values and their actions are:

The flag - o allows you to specify an output file. If the output file is not specified
with the - o flag, output defaults to the file a. j ar in the current directory.

The flag - ver si on outputs the version information.
The flag - hel p displays online documentation for this command.

The flag - nobanner suppresses all messages to standard output.

21

22 Java CardO 2.1.1 Development Kit User's Guide ¢ June 1, 2000

CHAPTER 6

Using the JCWDE

The JCWDE tool kit allows the simulated running of a Java Card applet as if it were
masked in ROM. It emulates the card environment.

The JCWDE tool kit executable consists of the j cwde. j ar, api 21. j ar, and
apdui o. j ar files. Also provided are the sample applets in the sanpl es. j ar file.
The main class for JCWDE is com sun. j avacard. j cwde. Mai n.

A sample batch and shell script are provided to start JCWDE.

Preliminaries

Make sure that the CLASSPATH and JC21BI N environment variables are set, as
detailed in “Setting up Your Environment” on page 4.

Configuring the Applets in the JCWDE Mask

The applets to be configured in the mask during JCWDE simulation need to be listed
in a configuration file that is passed to the JCWDE as a command line argument. In
this release, the sample applets are listed in a configuration file called j cwde. app.

Each entry in this file contains the name of the applet class, and its associated AID.

The configuration file contains one line per installed applet. Each line is a white
space(s) separated { CLASS NAME, Al D} pair, where CLASS NAME is the fully
gualified Java name of the class defining the applet, and Al D is an Application
Identifier for the applet class used to uniquely identify the applet. Al D may be a
string or hexadecimal representation in form 0xXX[:0xXX]}. Note that Al D should be
5 to 16 bytes in length.

1. Repeat the construct :0xXX as many times as necessary.

23

For example:

com sun. javacard. sanpl es. wal | et. Wal | et Oxa0: 0x0: 0x0: 0x0: Ox62: 0x3: 0x1: Oxc: 0x6: 0x1

Note — The installer applet must be listed first in the JCWDE configuration file.

If you write your own applets for public distribution, you should obtain an AID for
each of your packages and applets according to the directions in §4.2 of the Java
Cardd 2.1.1 Virtual Machine Specification, and in ISO 7816 Specification Parts 1-6.

24

Running the JCWDE Tool

The general format of the command to run the JCWDE is as follows:

jcwde [-p port] [-version] [-nobanner] <config-file>

where:
the flag - p allows you to specify a TCP/IP port other than the default port;
the flag - ver si on specifies prints the JCWDE version number;
the flag - nobanner suppresses all messages to standard output; and
<confi g-fil e>is the configuration file described above.

When started, JCWDE starts listening to APDUs in T=0 format on the TCP/IP port
specified by the —p port parameter. The default port is 9025.

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

CHAPTER 7

Using the Installer

Overview

The Java Card installer’s role in the JCWDE simulation is to create instances of the
applets previously configured in the JCWDE mask file. (See “Configuring the
Applets in the JCWDE Mask” on page 23.)

The APDU command sequence for creation is shown below in “Create Only” on
page 26.

For more information about the installer, please see the Java Card 2.1.1 Runtime
Environment (JCRE) Specification

Installer Applet AID

The on-card installer applet AID is: 0xa0, 0x0, 0x0, 0x0, 0x62, 0x3, 0x1, 0x8, Ox1

How to Use the Installer

The installer is invoked using the APDUtool. (See Chapter 8, “Using the APDUTool.)

Applet creation is the only scenario supported by the installer in the JCWDE mode:

25

26

Create Only

In this scenario, the applet from the set configured in the mask is instantiated. (Refer
to “Configuring the Applets in the JCWDE Mask” on page 23). Steps to perform this
creation of the JavaPurse applet are:

. Determine the applet AID.

. Create an APDU script similar to this:

power up;
/1 Select the installer applet

0x00 OxA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01
OX7F;

/1 begin installer command

0x80 0xBO 0x00 0x00 0x00 Ox7F

// create JavaPurse

0x80 0xB8 0x00 0x00 0xOb 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x04
0x01 0x00

OX7F;

// end installer conmmand

0x80 OxBA 0x00 0x00 0x00 Ox7F

power down;

3. Invoke APDUTool with this APDU script file path as the argument.

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

Installer APDU protocol

The Installer APDU protocol follows a specific time sequence of events in the
transmission of Applet Protocol Data Units as shown in the following figure.

Terminal I Receiver (Card)
Select |

—
|

A/L'/ Response
|

time

CAP Begin \I‘
|
/ Response

|
Create Applet \l\i
4///'/// Response
|
CAP End N\i
4/4// Response

|
FIGURE 7-1 Installer APDU Transmission Sequence

The following frame (data unit) formats are used in the Installer APDU protocol.

Protocol Data Unit Types

There are many different APDU types, which are distinguished by their fields, and
field values. The following is a list of allowed APDUs for this release.

m Select

m Response (ACK or NAK)
m Create Applet

m CAP Begin

m CAP End

Chapter 7 Using the Installer 27

Descriptions of each of these APDU data types, including their bit frame formats,
field names and field values follows.

Select

The table below specifies the field sequence in the Select APDU, which is used to
invoke the on-card installer.

Table 1: Select APDU

00, Oxa4, 04, 00

Lc field Installer AID Le field

Response

The table below specifies the field sequence in the Response APDU. A Response
APDU is sent as a response by the on-card installer after each APDU that it receives.
The Response APDU can be either an Acknowledgment (called an ACK) which
indicates that the most recent APDU was received successfully, or it can be a
Negative Acknowledgement (called a NAK) which indicates that the most recent
APDU was not received successfully and must be either resent or the entire Installer
transmission must be restarted. The first ACK indicates that the on-card installer is
ready to receive. The values for an ACK frame SW1SW2 are 6XXX, and the values
for a NAK frame SW1SW?2 are 9000.

Table 2: Response APDU

[optional response data] SW1sSw?2

Create Applet

The table below specifies the field sequence in the Create Applet APDU. The
Create Applet APDU is sent to the on-card installer, and tells the on-card installer to
create an applet from each of the already sequentially transmitted components of the
CARP file.

Table 3: Create Applet APDU

0x80, 0xb8, 0x00, 0x00 Lc AID AID | parameter [parameters] | Le field
field | length length field
field

28 Java CardO 2.1.1 Development Kit User's Guide ¢ June 1, 2000

CAP Begin

The table below specifies the field sequence in the CAP Begin APDU. The
CAP Begin APDU is sent to the on-card installer, and indicates that the CAP file
components are going to be sent next, in sequentially numbered APDUs.

Table 4. CAP Begin APDU

0x80, 0xb0, 0x00, 0x00

[Lc field]

[optional data]

Le field

CAP End

The table below specifies the field sequence in the CAP End APDU. The
CAP End APDU is sent to the on-card installer, and indicates that all of the CAP file
components have been sent.

Table 5: CAP End APDU

0x80, Oxba, 0x00, 0x00

[Lc field]

[optional data]

Le field

/**

Installer Error Response APDUS

* Response status :

*/
static final short

/**

* Response status :

*/
static final short

/**

* Response status :

*/
static final short

/**

* Response status :

*/

Invalid CAP file magi ¢ nunber

ERROR_CAP_NMAG C = 0x6402;

Invalid CAP file mnor nunber

ERROR_CAP_M NOR = 0x6403;

Invalid CAP file major nunber

ERROR_CAP_MAJOR = 0x6004;

0x6402

= 0x6403

= 0x6404

I nteger not supported = 0x640b

static final short ERROR_| NTEGER UNSUPPORTED = 0x640b;

/**

Chapter 7

Using the Installer

29

30

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

Dupl i cate package Al D found = 0x640c

ERROR DUP_PKG Al D = 0x640c;

Duplicate Applet A D found = 0x640d

ERROR _DUP_APPLET Al D = 0x640d;

Installation aborted = 0x640f

ERROR_ABORTED = 0x600f ;

Installer in error state = 0x6421

ERROR_STATE = 0x6421,;

CAP file conmponent out of order = 0x6422

ERROR_COVP_CRDER = 0x6422;

Exception occurred = 0x6424

ERROR_EXCEPTI ON = 0x6424;

Install APDU command out of order = 0x6425

ERROR_COMMAND_ORDER = 0x6425;

Invalid conponent tag number = 0x6428

ERROR_COVP_TAG = 0x6428;

Invalid install instruction = 0x6436

ERROR _| NSTRUCTI ON = 0x6436;

I mport package not found = 0x6438

ERROR _| MPORT_NOT_FOUND = 0x6438;

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

/**

* Response status :

*/

static final short

Il egal package identifier = 0x6439

ERROR _PKG | D = 0x6439;

Maxi mum al | owabl e package nethods exceeded

ERROR _PKG METHOD MAX_EXCEEDED = 0x6442;

not found = 0x6443

Appl et

ERROR_APPLET_NOT_FOUND = 0x6443;

Appl et creation failed = 0x6444

ERROR_APPLET_CREATI ON = 0x6444;

Maxi mum al | owabl e i nst ances exceeded = 0x6445

ERROR _| NSTANCE_NMAX_EXCEEDED = 0x6445;

Menory all ocation failed = 0x6446

ERROR_ALLOCATE_FAI LURE = 0x6446;

class not found = 0x6447

| mpor t

ERROR | MPORT_CLASS NOT_FOUND = 0x6447;

Chapter 7 Using the Installer

= 0x6442

31

Installer Requirements

The on-card installer applet must be the first applet in the JCRE.

Installer Limitations

m The maximum length of the parameter in applet creation APDU command is 14.
m The maximum number of applets which can be configured is 16 minus the

number of ROM applets.
m The maximum length of data in the installer APDU commands is 32.

32 Java CardO 2.1.1 Development Kit User's Guide ¢ June 1, 2000

CHAPTER 8

Using the APDUTool

The APDUTool reads a script file containing command APDUs and sends them to
the JCWDE. Each command APDU (C-APDU) is processed by the JCWDE and
returned to the APDUTool, which displays both the command and response APDUs
on the console. Optionally, the APDUTool can write this information to a log file.

Command line for apdutool

The file to invoke apdut ool is a shell script (apdut ool) on the UNIX® platform, and
a batch file (apdut ool . bat) on the Microsoft Windows NT platform.

A typical command line usage for apdut ool is:

apdut ool [-h hostnanme] [-nobanner] -o outputFile] [-p port]
[-version] inputFile

The option values and their actions are:

The flag - h allows you to specify the host name on which the TCP/IP socket port is
found. (See the flag - p.)

The flag - nobanner suppresses all messages to standard output.

The flag - o allows you to specify an output file. If the output file is not specified
with the - o flag, output defaults to standard output.

The flag - p allows you to specify a TCP/IP socket port other than the default port
(which is 9025).

The flag - ver si on outputs the version information.

The i nput Fi | e argument allows you to specify the input script.

33

The flag - hel p displays online documentation for this command.

34

apdutool syntax

The following is a command line invocation sample:

apdut ool exanpl e. scr

This command runs the APDUTool with the file exanpl e. scr as input. Output goes
to the console.

apdut ool —o exanpl e. scr. out exanpl e. scr

This command runs the APDUTool with the file exanpl e. scr as input. Output is
written to the file exanpl e. scr. out .

The APDU script file is a protocol-independent APDU format containing comments,
script file commands, and C-APDUs. Script file commands and C-APDUs are
terminated with a ';'. Comments may be of any of the three Java style comment
formats (//, /* or /**)

APDUs are represented by decimal, hex or octal digits, UTF-8 quoted literals or UTF-
8 quoted strings. C-APDUs may extend across multiple lines.

C-APDU syntax for APDUTool is as follows:
<CLA> <I NS> <Pl> P2> <LC> [<byte 0> <byte 1> ... <byte LG 1>] <LE> ;
where

<CLA> :: ISO 7816-4 class byte.
<I NS> :: ISO 7816-4 instruction byte.

<P1> :: ISO 7816-4 P1 parameter byte.

<P2> :: ISO 7816-4 P2 parameter byte.

<LC> :: ISO 7816-4 input byte count.

<byte 0> ... <byte LG 1> :: input data bytes.

<LE> :: ISO 7816- 4 expected output length byte. 0 implies 256.

The following script file commands are supported:

powerUp;

Send a power up command to the reader. A powerUp command must be executed
prior to sending any C-APDUs to the reader.

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

powerDown;

Send a power down command to the reader.

echo "string";

Echo the quoted string to the output file. The leading and trailing quote characters
are removed.

delay <Integer>;

Pause execution of the script for the number of milliseconds specified by <I nt eger >.

Chapter 8 Using the APDUTool 35

36 Java CardO 2.1.1 Development Kit User's Guide ¢ June 1, 2000

APPENDIX A

JCA Syntax Example

* % * X

accor dance
with Sun.

* % X kX

* % X F X

'
*
~

This appendix contains an annotated JCA file output from the Converter. The
comments in this file are intended to aid the developer in understanding the syntax
of the JCA language, and as a guide for debugging Converter output.

Copyright (c) 2000 Sun M crosystens, Inc. Al rights reserved.

This software is the confidential and proprietary information of Sun
M crosystens, Inc. ("Confidential Information"). You shall not
di scl ose such Confidential Information and shall use it only in

with the terms of the |icense agreement you entered into

SUN MAKES NO REPRESENTATI ONS OR WARRANTI ES ABOUT THE SUl TABI LI TY OF THE
SOFTWARE, EI THER EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR
PURPOSE, OR NON- I NFRI NGEMENT. SUN SHALL NOT BE LI ABLE FOR ANY DANMAGES
SUFFERED BY LI CENSEE AS A RESULT OF USING MODI FYI NG OR DI STRI BUTI NG
TH S SOFTWARE OR | TS DERI VATI VES.

/*

* JCA (Java Card Assenbly) annot ated exanpl e. The code contained within this exanple
* is not an executable program The intention of this programis to illustrate the
* syntax and use of the JCA directives and commands.

*

* AJCAfile is textual representation of the contents of a CAP file. The contents
* of aJCAfile are hierarchically structured. The format of this structureis:

*

* package

* package directives

* i mports bl ock

* appl et decl arations

* constant pool

* cl ass

37

D I D T T S R I

*

*

*

*
*

*

*

*/

field declarations
virtual nethod tables
nmet hods
nmet hod directives
nmet hod st at enments

JCA files support both the Java single |line conments and Java bl ock conments.
Anyt hing contained within a conment is ignored.

Nunbers may be specified using the standard Java notation. Nunbers prefixed

with a Ox are interpreted as

base- 16, nunbers prefixed with a 0 are base-8, otherw se nunbers are interpreted
as base- 10.

A package is declared with the .package directive. Only one package is all owed
inside a JCA

file. Al directives (.package, .class, et.al) are case insensitive. Package
class, field and

met hod nanes are case sensitive. For exanple, the .package directive may be witten
as . PACKAGE

however the package names exanple and ExAnPle are different.

. package exanple {

38

/*

* There are only two package directives. The .aid and .version directives declare
* the aid and version that appear in the Header Conponent of the CAP file

* These directives are required.

.aid 0:1:2:3:4:5:6:7:8:9: 0xa: 0xb: 0xc: Oxd: Oxe: Oxf;// the AIDs |ength nust be
/1 between 5 and 16 bytes inclusive
.version 0.1; /1 major version <DOT> mi nor version

* The inports block declares all of packages that this package inports. The data
* that is declared

* in this section appears in the Inport Conponent of the CAP file. The ordering
* of the entries

* within this block define the package tokens which nust be used within this

* package. The inports

* block is optional, but all packages except for javal/lang inport at |east

* javal/lang. There shoul d

* be only one inports block within a package.

*/

.inmports {
0Oxa0: 0x00: 0x00: 0x00: 0x62: Ox00: Ox01 1.0;

Java Card 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

* * % * X

* % * X

/ javal/lang ai d <SPACE> javal/lang major versi on <DOT> javal/l ang m nor version

: .1 /| package test2
.1 /| package test3
.1 /| package test4

AAESA
oo ;g
coo

The appl et block declares all of the applets within this package. The data
declared within this block appears

in the Appl et Conponent of the CAP file. This section may be omtted if this
package decl ares no applets. There

shoul d be only one applet block within a package.

testl;// the class nane of a class within this package which
test2;// contains the nethod install ([BSB)V
test 3;

w0~ o
AR A
Www o
NN N
(SN
o oo

The constant pool block declares all of the constant pool’s entries in the
Const ant Pool Conponent. The positional

ordering of the entries within the constant pool block define the constant pool
i ndices used within this package.

There shoul d be only one constant pool block within a package.

There are six types of constant pool entries. Each of these entries directly
corresponds to the constant pool
entries as defined in the Constant Pool Conponent.

The comment ed numbers which follow each line are the constant pool indexes
which will be used within this package.

. const ant Pool {

/*
* The first six entries declare constant pool entries that are contained in
* ot her packages.

* Note that super MethodRef are always declared internal entry.

*/
cl assRef 0.
i nstanceFi el dRef 1.

0; /1 0 package token 0, class token O
0. 2; /1 1 package token 1, class token O,

I/ instance field token 2

vi rt ual Met hodRef 2.0.2; /1l 2 package token 2, class token O,
I/ instance field token 2

cl assRef 0. 3; /1 3 package token 0, class token 3

staticFi el dRef 1.0. 4; /1l 4 package token 1, class token O,
I/ field token 4

Appendix A JCA Syntax Example 39

st ati cMet hodRef 2.0.5; /1 5 package token 2, class token O,
/1 met hod token 5

/*

* The next five entries declare constant pool entries relative to this class.
*

cl assRef t est 0; /] 6
i nst anceFi el dRef testl/fieldl; 17
virtual Met hodRef testl/ methodl()V; /1l 8
super Met hodRef t est 9/ equal s(Lj aval/l ang/ Qbj ect ;) Z; /19
stati cFi el dRef test1l/fieldO; /1 10
stati cMet hodRef test 1/ met hod3() V, /1 11

}

/*

* The class directive declares a class within the C ass Conponent of a CAP file.
* Al classes except javal/lang/ Object should extend an internal or external
* class. There can be

* zero or nore class entries defined within a package.

*

* for classes which extend a external class, the grammar is:

* .class nodifiers* class_nanme cl ass_token? extends packageToken. Cl assToken
*

* for classes which extend a class within this package, the gramar is:

* .class nodifiers* class_nane class_token? extends cl assNane

*

*

The nodifiers which are allowed are defined by the Java Card | anguage subset.
The class token is required for public and protected cl asses, and should not be
* present for other classes.

*/

*

.class final public testl O extends 0.0 {

/*

* The fields directive declares the fields within this class. There should
* be only one fields

* bl ock per class.

*/

.fields {
public static int fieldO O;
public int fieldl O;

* The public nethod table declares the virtual methods within this classes
* public virtual nethod

* table. The nunber following the directive is the nethod tabl e base (See the
* Class Component specification).

40 Java CardO 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

Met hod nanmes in declared in this table are relative to this class. This
directive is required even if there

are not virtual nmethods in this class. This is necessary to establish the
net hod tabl e base.

/

E I T R S 3

. publicnethodtable 1 {
equal s(Ljava/l ang/ Obj ect ;) Z;
met hod1() V;
met hod2() V,

}

/~k
* The package nethod table declares the virtual nmethods within this classes
* package virtual nethod

* table. The format of this table is identical to the public nmethod table.
*/

. packagenet hodt abl e 0 {}

.method public nethodl()V 1 { return; }
.method public nethod2()V 2 { return; }
.method protected static native nethod3()V 0 { }

.method public static install([BSB)V 1 { return; }
}

.class final public test9 9 extends testl {

. publicnethodtable 0 {
equal s(Ljava/l ang/ Obj ect ;) Z;
met hod1() V;
met hod2() V;

}

. packagenet hodt abl e 0 {}

.method public equal s(Ljaval/lang/Object;)Z 0 {
i nvokespeci al 9;
return;

}

.class final public testO 1 extends 0.0 {

.Fields {
/'l access_flag, type, nanme [token [static Initializer]]
public static byte field0 4 = 10;
public static byte[] fieldl O;
public static boolean field2 1;
public short field4 2;

’

Appendix A JCA Syntax Example 41

public int field3 O
}
. Publi cMet hodTabl e 1 {
equal s(Ljava/l ang/ Obj ect ;) Z;
abc()V; /1 method nust be in this class
def () V;
| abel Test () V;
instructions()V;

}

. PackageMet hodTabl e 0 {
ghi () V; /1 method nmust be in this class
IRNOAS

}

/1 if the class inplenents nore than one interface, multiple
/1 interfacelnfoTables will be present.
.Interfacel nfoTable 0.0 {

0; /1 index in public method table of mnethod
1; /1 index in public nmethod table of nethod
}
.InterfacelnfoTable 0.0 {
1; /1 index in public method table of nethod
}
/*

* Declaration of 2 public visible virtual nethods and two package visible
* virtual nethods..

*/
.met hod public abc()V 1 {
return;
}
.method public def()V 2 {
return;
}
.met hod ghi ()V 0x80 { /1 per the CAP file specification, nmethod tokens
/1 for package visible nmethods
return; /1 must have the nost significant bit set to 1.
}
.method jKkI()V 0x81 {
return;
}
/*
* This method illustrates local |abels and exception table entries. Labels
* are local to each
* method. No restrictions are placed on | abel names except that they nust
* begin with an al phabetic

character. Label nanmes are case insensitive.

*

* Two nmethod directives are supported, .stack and .locals. These

42 Java CardO 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

* directives are used to
* create the nmethod header for each nethod. If a nethod directive is omtted,
* the value 0 will be used.

*

*/

.method public static install ([BSB)V 0 {

| 0:
I 1:
| 2:
| 3:
| 4:
| 5:

L1:

L2:

.stack O;
.locals 0;
nop;

nop;

nop;

nop;

nop;

nop;
return;

~
*

*

Each met hod nay optionally declare an exception table. The start offset,
end of fset and handl er of fset

may be specified nunmerically, or with a |abel. The format of this table
is different fromthe exception

tables contained within a CAP file. In a CAP file, there is no end

of fset, instead the length fromthe

* % * ok

*

* starting offset is specified. Inthe JCAfile an end offset is specified
* to allow editing of the

* instruction streamwi thout having to recal cul ate the exception table

* | engt hs nanual ly.

*/

.exceptionTabl e {
/1 start_offset end_offset handl er_of fset catch_type_index;
101415 3;
111315 3

Label s can be used to specify the target of a branch as well.
Here, forward and backward branches are
illustrated.

.method public |abel Test()V 3 {

goto L2;
nop;
nop;
goto L1,
nop;

Appendix A JCA Syntax Example 43

nop;
goto_w L1,
nop;
nop;
goto_w L3;
nop;
nop;
nop;
L3: return;

* This nethod illustrates the use of each Java Card 2.1.1 instruction.
* Mhenom cs are case insensitive.

* See the Java Card Virtual Machine Specification for the specification of
* each instruction.

.method public instructions()V 4 {

aal oad;

aast or e;
aconst _nul | ;
al oad O;

al oad_0;

al oad_1;

al oad_2;

al oad_3;
anewarray O;
aret urn;
arrayl engt h;
astore O;
astore_0;
astore_1;
astore_2;
astore_3;

at hr ow;

bal oad;

bast or e;

bi push 0;
bspush O0;
checkcast 10
checkcast 11
checkcast 12
checkcast 13
checkcast 14
dup2;

dup;

dup_x 0x11;

eLeLeee

44 Java CardO 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

getfield_a 1;
getfield_a_this
getfield_a w 1;
getfield_b 1;
getfield_b_this
getfield_b_w 1;
getfield_i 1,
getfield_i_this
getfield_i_w1;
getfield_s 1;
getfield_s_this
getfield_s_w 1;
getstatic_a 4;
getstatic_b 4;
getstatic_i 4;
getstatic_s 4;
goto O;

goto_w O;

2b;

2s;

add;

al oad;

and;

astore;

cnp;

const _0;
const _1;
const _2;
const _3;
const _4;
const _5;
const _mi;
div;

f _acnpeq O;

f _acnpeq_w 0;
f _acmpne O;

f _acrmpne_w 0;
f _scnpeq O;

f _scnpeq_w O0;
f _scnpge O;

f _scnpge_w 0;
f _scmpgt O;
f_scnpgt_w 0;
f_scnple O;
f_scrple_w 0;
f_scmplt O;
f_scmplt_w O;
f _scnpne O;

f _scnpne_w 0;
feq O;

Appendix A

JCA Syntax Example

45

46

ifeq_w O;

ifge O;

ifge_w O;

ifgt O;

ifgt_w O;

ifle O;

ifle w O;

iflt O;

iflt_wO;

ifne 0;

ifne_w O;

i fnonnul |l O;

i fnonnul |l _w O;

ifnull O;

i fnull_w O;

iinc 0 O;

iinc_w 0 O;

iipush O;

iload O;

il oad_O;

iload_1;

iload_2;

il oad_3;

il ookupswitch 0 1 0 O;
i npdepl;

i mpdep2;

mul ;

neg;

nst anceof 10
nst anceof 11
nst anceof 12
nst anceof 13
nst anceof 14 0;
nvokei nterface 0 0 O;

eLeee

nvokestatic 5;
nvokevirtual 2;
or;

rem

return;

shl ;

shr;

store O;
store_O;
store_1;
store_2;
store_3;

sub;
itableswitch 0 0 1 0 O;

Java Card[d 2.1.1 Development Kit User’s Guide

nvokespeci al 3;// super Met hodRef
nvokespeci al 5;// staticMethodRef

« June 1, 2000

i ushr;

i xor;

jsr 0;

new O;

newarray 10;
newarray 11,
newarray 12;
newarray 183;
newarray boolean[];// array types may be decared nunerically or
newarray byte[];// synbolically.
newarray short[];
newarray int[];
nop;

pop2;

pop;

putfield_a 1,
putfield_a_this 1;
putfield a w 1;
putfield_b 1;
putfield_b_this 1;
putfield_b_w 1;
putfield_i 1,
putfield_i_this 1;
putfield_i_w 1;
putfield_s 1;
putfield_s_this 1;
putfield_s_w 1;
putstatic_a 4;
putstatic_b 4;
putstatic_i 4;
putstatic_s 4;

ret 0O;

return;

s2b;

s2i;

sadd;

sal oad;

sand;

sastore;

sconst _0;

sconst _1;

sconst _2;

sconst _3;

sconst _4;

sconst _5;

sconst _mi;

sdi v;

sinc 0 O;

sinc_w 0 O;

si push 0;

Appendix A JCA Syntax Example 47

sl oad 0;

sl oad_0;

sl oad_1;

sl oad_2;

sl oad_3;

sl ookupswitch 0 1 0 O;
smul ;

sneg;

sor;

srem
sreturn;
sshl ;

sshr;

sspush 0;
sstore O;
sstore_O;
sstore_1,;
sstore_2;
sstore_3;
ssub;
stableswitch 0 0 1 0 O;
sushr;
swap_x 0x11;
sxor;

}

.class public test2 2 extends 0.0 {

. publi cMet hodTable 0 {}
equal s(Ljava/l ang/ Obj ect ;) Z;

. packageMet hodTabl e 0 {}

.method public static install ([BSB)V 0 {
.stack O;
.locals O;

return;

}

.class public test3 3 extends test2 {

/*
* Declaration of static array initialization is done the same way as in Java Card
* Only one dinensional arrays are allowed in Java Card
* Array of zero elements, 1 elenment, n elenents
*/
.fields {
public static final int[] array0 0 = {}; 1Tl

48 Java CardO 2.1.1 Development Kit User’s Guide ¢ June 1, 2000

public static final byte[] arrayl 1 = {17
public static short[] arrayn 2 = {1, 2, 3,.

}
. publi cMet hodTable 0 {}
equal s(Ljava/l ang/ Obj ect ;) Z;
. packageMet hodTabl e 0 {}
.method public static install([BSB)V 0 {
.stack O;
.locals 0;
return;
}
}
.interface public test4 4 extends 0.0 {
}

}s 11
.., n}; 1/

Appendix A

[B
[S

JCA Syntax Example

49

	Contents
	Figures
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Ordering Sun Documents
	What Typographic Changes Mean

	Introduction to the Java Card Development Kit
	Installation
	Installing the Java Card‘ 2.1.1 Development Kit
	Setting up Your Environment
	The JC21BIN Environment Variable
	The PATH Environment Variable
	The CLASSPATH
	Java VM Considerations

	Installed Directory Structure

	Obtaining javax.comm

	How to Use this Release
	The Java Card Demonstration Applets
	Running the Sample Applets
	Building the Sample Applets

	Using the Converter
	Java Compiler Options
	File and Directory Naming Conventions
	Input Files
	Output Files

	Loading Export Files
	Specifying an Export Map
	Running the Converter
	Command Line Arguments
	Command Line Options
	Command Configuration File

	Using capgen
	Command line for capgen

	Using the JCWDE
	Preliminaries
	Configuring the Applets in the JCWDE Mask

	Running the JCWDE Tool

	Using the Installer
	Overview
	Installer Applet AID
	How to Use the Installer
	Create Only

	Installer APDU protocol
	Protocol Data Unit Types
	Select
	Response
	Create Applet
	CAP Begin
	CAP End

	Installer Error Response APDUs
	Installer Requirements
	Installer Limitations

	Using the APDUTool
	Command line for apdutool
	apdutool syntax
	powerUp;
	powerDown;
	echo "string";
	delay <Integer>;

	JCA Syntax Example

